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[1] The three-dimensional structure and the inhomogeneity of clouds pose a field of
challenges. The characterization of their spatial structure, their microphysical properties,
and their variability is difficult. This kind of knowledge is crucial to any investigation
on the impact of clouds on the radiation budget or on the reliability of cloud remote
sensing data. In this article the characteristics of radiation transport in inhomogeneous
clouds are studied using three-dimensional (3-D) simulations of radiative transport and the
independent pixel approximation (IPA). The opposing effects of radiative smoothing
and sharpening due to horizontal photon transport are examined in terms of the Green’s
function, which describes the interrelation of the radiance fields calculated using IPA and
3-D radiative transport. On the basis of these considerations a novel method was
developed for the retrieval of realistic 3-D stratocumulus structures from high-spatial-
resolution radiance fields observed by a compact airborne spectrographic imager
(CASI, 15 m resolution). An initial distribution of liquid water content and effective
droplet size retrieved using the IPA assumption and an adiabatic microphysical model is
iteratively adjusted with the objective of matching the observation by the 3-D forward
radiative transfer simulation for the derived cloud. For the iterative adjustment an
approximate Green’s function is utilized to remove 3-D effects from the observation. The
performance of the method is characterized by application to a known cloud structure and
by comparison of the derived cloud properties to in situ data from various field campaigns.

The method provides the ideal basis for our studies on the remote sensing of

inhomogeneous clouds.

Citation: Zinner, T., B. Mayer, and M. Schroder (2006), Determination of three-dimensional cloud structures from high-resolution
radiance data, J. Geophys. Res., 111, D08204, doi:10.1029/2005JD006062.

1. Introduction

[2] Clouds are three-dimensional and highly inhomo-
geneous on all scales of time and space. That causes a
variety of problems for the measurement of cloud
properties, in particular for passive remote sensing tech-
niques. At the same time, our knowledge of cloud
characteristics and their evolution in time decisively
depends on passive remote sensing from space and
aircraft as only those can provide sufficiently complete
data sets in terms of horizontal coverage. Future active
remote sensing instruments like CloudSat and Calipso
[Stephens et al., 2002] will give new insights and com-
plement the passive measurements.

[3] As the horizontal resolution of a sensor is always
limited, the lack of information on subpixel-scale variability
leads to the basic assumption of standard remote sensing:
Clouds are assumed to be plane-parallel and homogeneous
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throughout the field of view of the instrument. This is the
plane parallel approximation (PPA). This assumption causes
a bias in the retrieved cloud parameters due to the nonlinear
dependence of cloud properties and the related reflected
radiance, the so-called plane-parallel bias [Cahalan et al.,
1994a]. The plane parallel bias generally increases with
pixel size as the amount of subscale inhomogeneity is
increasing. A second assumption is generally used by
remote sensing algorithms: Individual pixels are considered
independent. This is the so-called independent pixel ap-
proximation (IPA). The IPA neglects net horizontal trans-
port of radiation between neighboring pixels, which causes
the so-called independent pixel error [Cahalan et al.,
1994b]. The independent pixel error increases as the pixel
size decreases because the smaller the pixel is the more
important is the net horizontal photon transport compared to
the vertical transport.

[4] Apart from several investigations on the impact of
a neglect of cloud inhomogeneity and three-dimensional
(3-D) radiative transport on the derived radiative fluxes
[e.g., Cahalan et al., 1994a, 1994b; Marshak et al., 1998c;
Fu et al., 2000; Scheirer and Macke, 2003; Di Giuseppe
and Tompkins, 2003], there have been first attempts to
investigate the uncertainties of cloud property retrievals
[Loeb et al, 1998; Varnai, 2000] and to systematically
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Figure 1.

quantify them [Varnai and Marshak, 2001]. First
approaches to quantitatively consider cloud inhomogeneity
in retrieval schemes were proposed as well [Faure et al.,
2001, 2002; Iwabuchi and Hayasaka, 2003].

[5] The influence of cloud variability and 3-D radiative
transport on remote sensing cannot be quantified on the
basis of passive remote sensing data only since the true
cloud properties remain unknown [Cahalan et al., 1994a;
Coakley, 1991; Rossow et al., 2002]. Thus most of the
aforementioned analyses and methods were based on a
priori defined 3-D cloud structures (3-D distributions of
liquid water content (LWC) and cloud particle size distri-
butions) which were used as input to realistic 3-D radiative
transport simulations. Consequently all approaches depend
on the complexity and the realism of the underlying cloud
structures.

[6] In addition to statistical cloud models, first attempts
have been made to use physics-based cloud simulation data
(e.g., from large eddy simulations) as input to similar
investigations [O Hirok and Gautier, 1998; Scheirer and
Macke, 2003; Wyser et al., 2002; Barker et al., 2003]. The
preparation of such data sets is computationally expensive;
on the other hand their realism is still doubtable, especially
as far as the small-scale variability of cloud microphysics is
concerned as it is affected by numerical filtering [Bryan et
al., 2003]. Generally, it seems desirable to stay as close as
possible to observed data. This is for example achieved with
the aid of sophisticated statistical cloud models extrapolat-
ing observed characteristics of the cloud microphysics to
full 3-D structures. Starting from in situ measurements
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Examples of CASI observations: radiance at 753 nm, horizontal resolution 15 m x 15 m,
scene size approximately 1.3 km x 10 km, boundary layer clouds over ocean, north of the Canary
Islands, June/July 1997. The resolution is high enough to observe waves at the ocean surface.

[Venema et al., 2004; Scheirer and Schmidt, 2005] or radar
cross sections [Evans and Wiscombe, 2004], large informa-
tion gaps have to be filled because of the limited spatial
sampling achievable today.

[7] This paper introduces a method to determine 3-D
cloud structures directly from observations and thereby to
ensure that the basic features of a cloud scene and the natural
variability of cloud situations are obtained. For this purpose
a novel remote sensing method to derive complete 3-D
cloud structures from high-resolution radiance fields mea-
sured by an airborne spectrometer is described. This method
quantitatively takes into account 3-D radiative transport.
Section 2 introduces the basic ideas. In section 3 the details
of the method and of the generated cloud data sets’ are
given; the cloud properties are summarized and compared to
different measurements of typical properties of marine
stratocumulus. In section 4 a test of the method is shown
using an artificial test case. In sections 5 and 6 the capabil-
ities and limitations of the method are discussed and an
outlook on possible refinements and applications is given.

2. Basis
2.1. Data

[8] The data basis of high-horizontal-resolution radiance
observations is provided by the compact airborne spectro-
graphic imager (CASI) [Babey and Anger, 1989]. The CASI
is a “push broom” imaging spectrometer with a field of
view of 34° across the flight track. The data was collected
over sea on board the DLR Do-228 aircraft during the ACE2
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Figure 2. Distribution of liquid water path (LWP) of a
cloud structure with a power spectral behavior of —5/3.

CLOUDYCOLUMN campaign north of the Canary Islands
in June/July 1997. Here data from the scene recovery
channel operated at 753 nm is used, which provides the full
resolution of 512 cross-track pixels corresponding to a
spatial resolution of about 2.5 m at cloud top. The along-
track resolution of 15 m results from the aircraft speed and
the sampling time of the instrument. The cross track
resolution of 2.5 m is reduced to yield approximately
quadratic pixels of 15 m x 15 m. Twenty-seven cases of
marine stratocumulus observations at solar zenith angles
between 6.5° and 16° were selected. The cases comprise
cloud fractions between 5 and 100% (Figure 1). All scenes
are of similar size of about 1.3 km x 10 km. Some auxiliary
information (in situ measurements of number densities of
droplets or cloud condensation nuclei) is taken from pub-
lications on the ACE2 CLOUDYCOLUMN campaign
[Brenguier et al., 2000b; Chuang, 2000].

2.2. Radiative Transfer Models

[9] For all following simulations of radiative transport the
3-D Monte Carlo code MYSTIC validated in the intercom-
parison of 3-D radiation codes (I3RC) [Mayer, 1999, 2000;
Cahalan et al., 2005] is used. To achieve complete consis-
tency, even the calculation of IPA reflectivities in section
2.3 as well as the preparation of a lookup table for a
standard IPA retrieval of optical thickness are done with
the 3-D MYSTIC in IPA mode where the horizontal
transport of photons between columns is switched off.
The model is part of the libRadtran (library of radiative
transfer) package [Mayer and Kylling, 2005]. For an ade-
quate simulation of the CASI measurement, a Lambertian
surface albedo of 2.5% (realistic outside the sunglint region)
is assumed and all simulations are done monochromatically
at 753 nm. Cloud microphysical parameters are converted to
optical properties via Mie calculations. For all calculations a
standard atmosphere for midlatitude summer was assumed
[Anderson et al., 1986].

2.3. Basic Ideas

[10] As for each remote sensing instrument, the mentioned
uncertainties, the plane-parallel (PP) bias and the indepen-
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dent pixel (IP) error, have to be considered when evaluating
the CASI observations. At a resolution of 15 m X 15 m the
PP bias can be assumed to vanish as no significant subscale
variability of the radiation field has to be expected below this
scale. Marshak et al. [1998D] state the critical scale to be the
mean free path length of photons between two scattering or
absorption events. For the cloud scenes investigated here
this value is typically larger than 15 m. In contrast, the IP
error introduced by horizontal photon transport is certainly
of decisive importance to remote sensing methods at this
resolution. The problem to be solved is the search for the
3-D cloud structure whose related radiance field matches
the observed distribution. In order to complete this task the
basic physical processes of radiative transport need to be
accounted for.

[11] Following Marshak et al. [1998a], the horizontal
transport of photons can be described by means of a Green’s
function. This function is the link between the 3-D radiance
field and the IPA radiance field and depends mainly on the
optical thickness, the geometrical thickness, and the scat-
tering asymmetry factor. Knowledge of the Green’s function
would in principle allow the retrieval of the correct cloud
properties with the usual IPA, as the actual observed 3-D
field could be deconvolved to yield the IPA field. In real
applications, however, neither the Green’s function nor the
IPA radiance field are known.

[12] The IPA and the 3-D radiance fields can be calcu-
lated via radiative transfer simulations, if the underlying
cloud field is known. Both radiance fields simulated for a
given cloud case (Figure 2) are displayed in Figure 3. The
cloud structure has been generated using a statistical model
employing a rescaling of a random distribution of liquid
water path (LWP) values to fit the —5/3 power law
[Kolmogorov, 1941], similar to the models described by
Di Giuseppe and Tompkins [2003] and Venema et al.
[2004]. The data series shown in Figure 2 represents the
variability of the cloud LWP between fixed cloud base and
top heights and comprises a typical range of values for
marine stratocumulus: the liquid water path reaches values
of up to 90 g/m” corresponding to an optical thickness of
15. The related fields of nadir (Bsensor = 0°) reflectivity for a
zenith Sun (64, = 0°) in Figures 3a and 3b are simulated in
IPA mode and 3-D mode, respectively. There is an obvious
difference between the 3-D and IPA reflectivity fields,
called the radiative smoothing effect [Marshak et al.,
1995; Davis et al., 1997]. This effect is caused by the
horizontal diffusion of photons which occurs only in the 3-D
calculation. The 3-D field can be described as the convo-
lution of the IPA field with the Green’s function. Given the
two simulated fields the Green’s function can thus be
determined from the 3-D and IPA reflectivity fields. This
is best done in Fourier space where a convolution corre-
sponds to a simple multiplication of Fourier series. Figure 3¢
shows the Fourier space picture, i.e., the power spectra of
the three data series of LWP, IPA reflectivity, and 3-D
reflectivity. While the IPA spectrum follows the —5/3 slope
that was used to generate the LWP field, the amplitudes of
the 3-D spectrum for higher wave numbers k£ are smaller
because of the smoothing of high frequencies in the reflec-
tivity fields. It should be mentioned at this point that such a
change of smoothing regimes, marked by a power spectral
scale break, was found in analyses of satellite and airborne
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Figure 3. (a) Top-of-atmosphere IPA reflectivity from DISORT simulations for the LWP field in Figure 2
(constant cloud base and top), (b) 3-D reflectivity from MYSTIC simulations for 65, = 0°, Osensor = 0°,
(c) power spectra for LWP, IPA, and 3-D reflectivity fields, and (d) corresponding Green’s function.

data before and was related to horizontal photon transport at
the scale of cloud geometrical thickness / (here 2 =200 m)
[Marshak et al., 1995, 1998a; Davis et al., 1997; Schroder
and Bennartz, 2003]. In the investigated example a change
of slope is visible at about 1000 m. The Green’s function
obtained via division of the Fourier series of the 3-D by the
IPA reflectivity field and back transformation into real space
is depicted in Figure 3d. A plain analog to the Green’s
function is the reflection function of a laser beam entering
the cloud from the top which would produce a similar
reflectivity distribution because its light is transported away
from the entry point before it eventually leaves the cloud at
the top.

[13] A more realistic description of a cloud should
include cloud top structure. To introduce cloud top height
variability, we translate each value of the LWP distribution
to a geometrical cloud thickness using an adiabatic micro-
physical model. The liquid water content of an air parcel is
assumed to grow with height according to the adiabatic
LWC which can be calculated assuming adiabatic lifting of
a saturated air parcel. Depending on the cloud base height
and the liquid water path a cloud top structure is generated
(further details in Appendix A). Figure 4 shows the results
for this cloud case. Now a contrary effect of the horizontal
photon transport becomes effective: the radiative sharpening

effect [Loeb et al., 1998; Varnai, 2000]. The sharpening is
typically caused by cloud side illumination and shadows.
Although hardly detectable in the reflectivity picture the
partial statistical compensation of the smoothing effect can
be seen in the power spectrum by the increase of amplitudes
at high wave numbers. Although sharpening effects obvi-
ously become more relevant for low Sun, they also occur for
overhead Sun because a certain fraction of the radiation is
always dispersed in the top parts of the cloud providing a
horizontal component. This effect is enhanced for larger
solar zenith angles, e.g., for Oy, = 30° in Figure 5. Then
shadows and bright slopes lead to a much rougher appear-
ance of the reflectivity distribution than it is the case for the
IPA field. The sharpening is reflected in the power spectra
by larger amplitudes at all but the lowest frequencies. The
Green’s function is much more complex now. Its distinct
negative values reflect the shadow effects: For example, a
high value in the IPA field is not necessarily related to a
bright 3-D pixel anymore, because the latter is rather a sign
of a sunlit slope than of a high optical thickness. As the
Green’s function displayed is the combination of the hori-
zontal transport characteristic of any pixel’s surrounding in
the field (which in case of strong shadowing is very distinct
for each point) a simple relationship to the features of the
involved fields (3-D, IPA) is not to be expected.
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Figure 4. Same as Figure 3, but for variable cloud top height.

[14] On the basis of the characteristics of radiative
smoothing, Marshak et al. [1998a] propose the “nonlocal
independent pixel approximation” to correct a retrieval of
cloud properties for the influence of horizontal transport
phenomena: An observed (3-D) radiance field can be
deconvolved with a Green’s function prior to the application
of standard remote sensing techniques to the resulting IPA
field. This technique of course requires knowledge of the
true Green’s function for the specific cloud field. It can be
shown that a Green’s function obtained as shown before can
be used to improve the retrieval for similar cloud fields, if
the clouds lack cloud top structure as in the study by
Marshak et al. [1998a]. On the contrary this approach fails
if cloud top structure and nonzenith Sun is introduced and
thus radiative sharpening becomes more important. In that
case the Green’s function is very specific for a given cloud
case. In contrast to radiative smoothing which is mainly
depending on the average values of a cloud area like the
average optical and geometrical thickness, radiative sharp-
ening is highly sensitive to the small-scale local geometry
deciding if a pixel is illuminated or shaded. Thus the
Green'’s function for a certain cloud scene contains all these
detailed information and is not applicable to other scenes
anymore.

[15] Nonetheless, the Green’s function or, as its approx-
imations are called from here on, the “point spread func-
tion” (PSF) constitutes the core of the method introduced in

this paper. Although the true Green’s function is unknown
for a given observed reflectivity field (i.e., it is unknown to
which extent radiative smoothing and sharpening act in the
first place) it can be safely assumed that in case of small
solar zenith angles the smoothing dominates the sharpening
(visible in Figures 3b, 4b, and 5b). The smoothing effect is
defined by the mean free path of photons in the cloud which
does not change significantly with zenith angle. The sharp-
ening becomes more significant for larger solar zenith
angles with increasing shadow effects until at the largest
zenith angles the contrasts become smoother again as major
parts of the cloud scene are shadowed then. Hence a
stepwise deconvolution with an approximate PSF will be
applied to selected scenes observed at small solar zenith
angles. This way an incomplete deconvolution is possible
and thus a partial compensation of radiative smoothing by
sharpening effects can be considered. An objective criterion
is established to stop the deconvolution at the appropriate
point, by comparing the observed radiance field with a 3-D
simulation based on the derived cloud structure.

3. Method

[16] As discussed a prerequisite is the selection of appro-
priate CASI scenes. All of the selected 27 scenes have been
observed between 1130 and 1310 local time. Thus the solar
zenith angle was smaller than 16°. Using a single wave-
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Figure 5. Same as Figure 3, but for variable cloud top height and 0, = 30°.

length, cloud optical thickness and via the adiabatic as-
sumption (Appendix A) geometrical thickness as well as
effective droplet size are retrieved for each pixel under the
independent pixel and plane-parallel assumptions (IPA
retrieval). A point spread function is determined by calcu-
lating the spread of a laser beam in a plane parallel cloud
generated by horizontally averaging the derived cloud
properties over the domain. This function is used to decon-
volve the observed radiance fields (section 3.2). As only
mean scene properties are used and neither the specific
variations of cloud properties nor cloud top height are
considered, this PSF represents only the smoothing compo-
nent. Thus a complete deconvolution with this PSF would
overestimate the actual smoothing effect as it neglects the
counteracting sharpening effects. Iterative deconvolution
methods allow an incomplete deconvolution because they
may be stopped after a number of iteration steps. An
established iterative method, the Richardson-Lucy algo-
rithm, is therefore used for the stepwise deconvolution of
the observed radiance field to obtain several versions of the
initial observation with increasing roughness. For each of
these, the full cloud structure is retrieved using the de-
scribed IPA procedure, including an adiabatic assumption of
the vertical structure (section 3.3). For these structures, in
turn, the radiance for the Sun and sensor geometry of the
related observation is simulated with the 3-D MYSTIC
model (section 3.4). Finally, criteria have to be found to
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select the 3-D cloud structure best matching the CASI
observation (section 3.5). In other words, a first guess cloud
structure is determined from the observation and subse-
quently adjusted until the 3-D radiation field calculated for
the cloud structure resembles the original CASI observation.

3.1. Independent Pixel Retrieval

[17] As a first step, the 2-D distributions of optical and
geometrical thickness are determined from the observation.
Therefore a lookup table with the tabulated relation of
optical thickness and radiance at 753 nm is used to retrieve
an IPA of the cloud properties for each pixel separately. The
mean cloud geometrical thickness results from the adiabatic
assumption. Thus the optical thickness is linked to geomet-
rical thickness, if the droplet size distribution or the accord-
ing effective droplet radius is known. The latter is estimated
from the LWC using fixed cloud droplet densities taken
from publications on the ACE2 CLOUDYCOLUMN cam-
paign [Brenguier et al., 2000b; Chuang, 2000]. Mean scene
cloud properties are derived by averaging all values of
cloudy pixels.

3.2. Determination of an
Approximate Green’s Function

[18] Figure 6 presents the result of a special “laser-like”
MYSTIC simulation where all photons enter a plane-paral-
lel cloud layer from the zenith direction at the central point
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Figure 6. (a) Point spread function from “laser-like”

MYSTIC simulations for a plane-parallel cloud layer 7= 17
and # = 100, 200, 500 m. The central pixel at x = 0 is
illuminated from zenith 6., = 0°. (b) Same as Figure 6a but
for A =200 m and T = 5, 10, 30.

of the field. The distribution of the photons reflected back
toward zenith after a number of scattering events displays
the effect of horizontal photon transport. As already
mentioned above, this function mainly depends on the
geometrical thickness 4, on the optical thickness T, and
on the asymmetry parameter [Marshak et al., 1998a]. In
fact, lidar systems based on this idea are already used to
determine the geometrical thickness of clouds [Davis ef al.,
1999].

[19] It might seem possible to find a better approximation
of the Green’s function by using the, at least approximately,
available two-dimensional distribution of cloud properties
and subsequent simulations similar to the method shown in
section 2.3. Feasible for small synthetic 1-D fields there, it
is not feasible to determine meaningful approximations for
the large CASI 2-D fields this way. The prerequisite for
such a determination would be noise-free fields: Neither the
original measurement is noise-free nor can any subsequent
3-D simulation be close to noise-free without great compu-
tational effort.
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[20] Here the point spread function is determined accord-
ing to the mentioned dependencies on optical and geomet-
rical thickness. According to the mean values of geometrical
and optical thickness and effective droplet size identified
before, the point spread function is simulated with MYSTIC
(Figure 6) for a plane parallel cloud layer comprising the
mean characteristics. This way a deconvolution kernel is
found which contains the average radiative smoothing
characteristics of the specific cloud field. Of course, this
comprises neither local characteristics of horizontal photon
transport nor any sharpening effects. Thus a complete
deconvolution of an observed radiance distribution with
this PSF would lead to an overcompensation of horizontal
transport. Therefore an iterative deconvolution terminated at
a certain step is a logical consequence.

3.3. [Iterative Deconvolution Algorithm

[21] Deconvolution problems without the knowledge of
the exact convolution function, so-called “blind” deconvo-
lutions, are usually solved with the aid of iterative
approaches which are terminated according to certain crite-
ria. A standard algorithm for such tasks is the Richardson-
Lucy algorithm independently developed by Richardson
[1972] and Lucy [1974]. This algorithm based on the Bayes’
theorem on conditional probabilities is, for example, used in
the sharpening of astronomical observations or underwater
photography and is in the following used in the form

011 = ((ﬁ) ®PSF)Oi. (1)

The observed radiance field is I; O; (Oy = I) is the result of
iteration step i, and PSF is the horizontal distribution of
reflectivity generated by the MYSTIC “laser” simulation.
The operator ® is the convolution operator. Multiplications
are point by point operations. The radiance field / is divided
by a smoothed form O; ® PSF of itself. This high-pass
filtering detects the sharp gradients of the field which are
then, in a smoothed version, used to scale the result of the
preceding iteration step O;.

[22] A standard convolution operation ® is equivalent to
the sum of fields with each single point value spread out
onto the surrounding points according to a smoothing
kernel. This picture corresponds to the case of horizontal
transport of photons in a cloud layer without gaps. An
adjusted operator needs to be defined for broken cloud cases
since the point spread function completely changes its shape
at cloud edges. There the photon path lengths increase
strongly and the probability to detect reflected photons
close to their entry point into the cloud, as expected for
the examples of point spread functions in Figure 6, would
strongly decrease. Photons “lost” at cloud edges will
increase the level of illumination for a large area of the
cloud free part of the scene adjoining the cloud element,
because of the large free horizontal path length. Thus the
convolution operator is modified: After each convolution
operation all values outside the cloud covered areas are
averaged. This way the point spread function limiting the
spread of reflection by horizontal photon transport to a
small area is changed wherever cloud edges are approached:
For the parts of the point spread function located outside the
cloud area, the short rapidly decreasing tail of the function is
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Figure 7. Richardson-Lucy algorithm for a CASI example: For the CASI observation (Figure 7a) a
cloud mask (Figure 7b) is determined by means of a radiance threshold depending on solar zenith angle.
For a 1-D section of the CASI data (Figure 7c) (marked with a gray line in Figures 7a and 7b) the effect
of the algorithm on the radiance field is demonstrated for two iteration steps.

replaced by the value which would result if all lost photons
were distributed equally over the cloud free scene. Of
course, in reality not only the cloud free part but other
cloud edges are illuminated by photon spread from neigh-
boring clouds as well. However, the impact is much larger
for the low reflective surface areas than for the bright cloud
edges and, for the latter, the effect cannot be considered in a
simplified qualitative way. The cloud mask used to classify
cloudy pixels is implemented as a radiance threshold test for
the original CASI observations (Figure 7). By each iterative
deconvolution step the reflectivity of highly reflective cloud
areas is increased as those areas have “lost™ reflectivity by
horizontal photon transport in the first place. On the
contrary cloud free, low reflectivity, arcas become darker
through the iteration because they were illuminated diffu-
sively by photon dispersion.

[23] This way, the adjusted Richardson-Lucy algorithm
generates different versions of the observed reflectivity field
with increasing sharpness. The cloud structures are obtained
via the IPA retrieval of optical thickness and the adiabatic
model, as mentioned above, assuming a fixed cloud base
height determined from the shadows cast onto the sea
surface for each observation date. In image processing such
an iterative deconvolution procedure is often terminated
before measurement noise is amplified. Here the iteration
step will be selected for which the 3-D radiance simulation
(and thus the underlying cloud structure) best matches the
CASI observation (section 3.5).

3.4. Simulation of the Observation

[24] In principle, for each iteration step a 3-D MYSTIC
simulation of reflectivity at 753 nm should be performed
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Figure 8. Power spectra of CASI reflectivity and Monte
Carlo simulations with different numbers of photons. To
obtain smooth power spectra, all available 1-D spectra of
equal length along the x and y directions are averaged (true
for all following spectra unless otherwise noted).

for the solar zenith angle at measurement time. Because
of the high computational demand the extent of the trial
simulations is restricted to the following: (1) The size of
the simulation domain is confined to a section of the
complete cloud structure of about 20% of the complete
CASI scene, and (2) only the iteration steps 0 (represent-
ing the unchanged observation), 1, 2, 4, 6, 9, 12, and 15
are processed. The selection of an appropriate section
from the whole cloud structure is optimized to meet the
average values of optical thickness and cloud coverage
typical for the specific scene as best as possible. The
selection of iteration steps is motivated by the fact that
the deconvolution algorithm converges quickly to the
mathematical solution; that is, the step-to-step changes
decrease.

3.5. Selection of Best Match

[25] This section describes the objective criteria to decide
which of the eight trial simulations and their related cloud
structures are the best match of the specific CASI observa-
tion. The most straightforward criterion is the point-by-
point deviation of trial simulation and CASI observation. A
small displacement of the maxima and minima due to the
inclined illumination, however, would cause large differ-
ences when compared point by point. As one of the main
concerns for the radiative transfer application is to obtain a
realistic variability of the optical thickness field and the
cloud top geometry, the power spectrum is a more appro-
priate criterion. An obstruction in the assessment of the
variability is intrinsic to the Monte Carlo method itself.
Although it lacks any approximations for the involved
physical processes it is inescapably burdened with noise,
i.e., with artificial small-scale variation. In Figure 8 the
problem becomes obvious for the comparison of a power
spectrum of a simulation and an observation. Especially at
high frequencies, the Monte Carlo spectrum is dominated
by noise. This is reduced only gradually with increasing
number of photons and accordingly increasing computation
time: The standard deviation of a sample mean, here the
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Monte Carlo simulation result, depends on the sample size,
i.e., the number of photons N [von Storch and Zwiers,
1999]:

—— 2)

VN

In order to halve the uncertainty, 4 times more photons are
required. Monte Carlo noise is white noise; that is, over all
scales a constant noise amplitude is added (mind the
logarithmic axes). Thus the Monte Carlo spectrum is
difficult to compare to the observed spectrum. In the
example shown, a large number of photons is required to
demonstrate that the power spectrum of the simulated field
actually drops faster than the observed spectrum in Figure 8.
To keep the computational time in a feasible range, we
developed a noise reduction technique: The total noise
amplitude is determined and subtracted from the noisy
spectrum. The amplitude is determined through several
Monte Carlo runs with a low number of photons providing a
confidence interval as well. A complete description of the
denoising method is given in Appendix B.

[26] Figure 9 displays the basis for the selection for
some of the trial cases: As mentioned in the beginning of
this section, the primary criterion is the comparison of the
power spectra of the trial simulations to the spectrum of
the observation separately for the x and y directions (top
panels in Figure 9); a secondary criterion is the direct
comparison of the reflectivity fields. For the comparison
of power spectra, the amplitudes are averaged over all
scan lines, separately for the x and y directions. The
directions are considered separately as the CASI simula-
tion section has different side lengths. Therefore a higher
weight is given to the longer y direction. The Fourier
amplitudes of the simulations are compared to the ones of
the observation by means of a root mean square deviation,
if the standard deviation o of the spectrum resulting from
the noise removal does not exceed 10% of the amplitude
(the confidence interval of 20 is shown in the top panels
of Figure 9). The reflectivity fields are compared by
means of a root mean square deviation of the reflectivity
values as well. The bottom left panel of Figure 9 shows
the root-mean-square (RMS) deviations (part of the RMS
deviation is caused by the Monte Carlo noise which
amounts to about 2.5%). Three criteria of selection are
used: The primary criterion is given by the level of
agreement of the y direction power spectrum, secondary
criteria are the agreement of the x power spectrum and the
minimum RMS pixel deviation. For each of the criteria
the best matching iteration step is selected. As the
decision is not always as consistent as shown in the
example Figure 9 (all criteria are in favor of step 4), a
simple scoring algorithm is used to account for the
hierarchy of the criteria. To the main criterion, the y
direction power spectrum, the weight 3 is assigned. The
weight 2 is given to each of the secondary criteria, x
power spectrum and RMS pixel deviation. In this way an
agreeing vote by the two secondary criteria would over-
rule the primary criterion.

[27] For broken cloud cases the differences between the
iteration steps decrease with decreasing cloud cover. The
selection of the exact iteration step is not decisive in these
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Figure 10. Results of the presented method: 3-D cloud
structure for two CASI cases (compare Figure 1 and
Figure 9). The gray scale clarifies the adiabatic vertical
structure of the clouds (increasing LWC and droplet radius
with height are indicated by darkening gray).

situations because the internal variation of the clouds
becomes less important for the radiation field compared to
the horizontal distribution pattern of cloudy areas.

[28] For all 27 cases iteration steps between 1 and 15
were selected. That means the unadjusted observation, step
0, was too smooth in all cases and the assumption that a
sharpening by deconvolution leads to better approximations
of the real cloud properties is valid. This situation changes
for larger solar zenith angles (compare section 2.3). In that
case, the sharpness introduced into the observation by the
top geometry and the solar zenith angle dominates the
smoothing effects. Thus it cannot be corrected for by a
deconvolution because a further sharpening would only
increase the differences.

[20] Figure 10 shows two of the 27 three-dimensional
cloud structures obtained this way for the complete
CASI scenes. Each data set has a spatial resolution of
I5m x 15 m x 10 m and a domain size of about 1.3 km x
10 km. Although the determined cloud structures are
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certainly not unambiguous, it is guaranteed that the sim-
ulated radiance field matches the initial observation.

3.6. Result Summary and Comparison to
Other Measurements

[30] In this section the question if the obtained data set is
representative for typical marine stratocumulus is addressed.
Twenty-seven cloud structures with a cloud cover between 5
and 100% were obtained with the method presented in this
paper. The range of the optical thickness is 0 < T < 40
(average cloud optical thickness T = 9) for a geometrical
thickness 4 of up to 500 m (2 = 146 m). The effective radius
reaches maximum values of 15 um near the cloud top (7o =
9.4 pm at cloud top). The variation of the cloud top
height is characterized by standard deviations between 14
and 71 m depending on the cloud scene. Keeping in mind
the limited number of cases the average numbers are in
good agreement with the values measured in situ or via
remote sensing techniques for the according dates of the
ACE2 CLOUDYCOLUMN campaign [Brenguier et al.,
2000a; Schiiller et al., 2003]. The average value of LWP
of 49 g/m? including about 35% cloudless columns (at a
resolution of 15 m x 15 m), compares well to measure-
ments of the LWP using microwave remote sensing during
the Baltex Bridge Campaign (BBC) by Crewell et al.
[2004]: For nonprecipitating stratocumulus under marine
influence an average LWP of 42 g/m* was measured. Also
the probability density function for the LWP observed
during BBC on a comparable resolution (depending on
the averaging time of the microwave sensor) closely
resembles the PDF obtained for the CASI cloud structures
(not shown). Similar probability density functions and
mean values are found for data from other field campaigns
like ASTEX or FIRE I [Cahalan et al., 1995]. Hence we
conclude that the derived data set is representative for
marine stratocumulus clouds.

4. Test of the Method

[31] In this section the method will be tested for an a
priori defined cloud structure. For this cloud a high-spatial-
resolution radiance field is simulated using MYSTIC for a
nadir viewing perspective corresponding to the CASI
fields. Thus a synthetic observation is provided featuring
all characteristics of a real CASI measurement, but in
addition, in this case the underlying 3-D distribution of
LWC and droplet radius is known and can be compared
to the result obtained using the method presented in
section 3.

[32] To allow the simulation of a synthetic observation
with a Monte Carlo code which is accurate enough the
simulation domain size is restricted to 1200 m x 1200 m.
The cloud structure is taken from one of the CASI
derived cloud data sets obtained in section 3. The simu-
lation of the 3-D radiance distribution the CASI instru-
ment would measure is done for a solar zenith angle of
5°, a nadir sensor view, and a horizontal resolution of
I5m x 15 m.

[33] In the same form as before, Figure 11 shows the
selection criteria for this test case. All three criteria, i.e.,
the power spectrum in x and y directions and the RMS
deviation from the synthetic observation, indicate iteration
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Figure 12. (a) Power spectrum and (b) probability density
function for the distribution of LWP related to the “real”
cloud structure and to several iteration steps of the method
of section 3. Iteration step 0 reflects the typical problems of
IPA remote sensing: underestimation of the variability and
thus the narrowing of the PDF. Iteration step 2 obviously
best matches the given synthetic cloud’s values.

step 2 to be selected. This selection is confirmed by the
analysis of the cloud structure derived from the synthetic
observation shown in Figure 12. Both the Fourier spec-
trum and the probability density function (PDF) of the
liquid water path field closely match the real underlying
cloud’s properties for iteration step 2. In contrast, the
determination of a 3-D cloud structure without compensa-
tion of horizontal photon transport (iteration step 0) would
result in a smoothed structure. Minimum and maximum
values of LWP and consequently of effective radius and
cloud top height would not be reached.

5. Discussion and Conclusions

[34] As mentioned before, the method might not pro-
duce unique solutions for each of the scenes. Other 3-D
cloud structures are imaginable as well resulting in a
correct reproduction of the initial measurements. However,
as far as the original observation’s viewing direction is
concerned, it is guaranteed that the relevant 3-D radiative
transfer processes are accounted for in a physical con-
sistent way: Solid assumptions on the vertical character-
istics link the horizontal distribution of optical properties

ZINNER ET AL.: THREE-DIMENSIONAL CLOUD STRUCTURES FROM RADIANCE DATA

D08204

to the wvertical distribution; via accurate 3-D radiative
transfer simulations the consistency of both distributions
is checked against the original measurement. Because of
this implicit cross-check, assumptions like the constant
cloud bottom height or the exact characteristics of the
adiabatic liquid water profile do have only minor impact
on the result as far as radiative transfer investigations
based on these cloud data are concerned. In the de-
scribed manner the method is confined to small solar
zenith angles, as otherwise large-scale shadows would
distort the retrieved cloud scene and would make the
basic idea of sharpening, unsmoothing the observation
futile as in these cases the sharpening effects of hori-
zontal transport dominates in the first place. A simplifi-
cation is the use of one mean smoothing characteristic
for the whole scene, which would in reality vary
depending on local properties even without any sharp-
ening or other interaction effects with the surrounding
cloud areas.

[35] That means, under selected circumstances (small
solar zenith angle, single layer stratocumulus) reliable
horizontal cloud property distributions are determined on
a high spatial resolution corrected for the dominant 3-D
effects and a reasonable guess of their vertical structure and
thus their cloud top geometry is provided. This way a
number of 27 three-dimensional cloud structures represen-
tative of typical single layer marine stratocumulus is
obtained directly related to a number of high-horizontal-
resolution observations.

6. Outlook

[36] A method to derive 3-D cloud structures from high-
resolution radiance data has been developed and applied to
a representative set of marine stratocumulus observations.
The computational effort is still large as several time
consuming Monte Carlo simulations are involved. Further
testing of the minimum number of photons to allow for the
selection process (compare section 3 and Appendix B) can
reduce computational time. The use of a backward Monte
Carlo model, on the other hand, would allow for the
simulation of a limited sample of independent lines of
reflection (and their power spectra) for each scene and
could thus either reduce the processing time as well or
increase the representativeness of the results for large scenes
without increasing the computational costs. A possible
extension and speedup could be achieved by a precalcula-
tion of typical point spread functions based on a large
number of combinations of optical and geometrical thick-
nesses. Such a table could then be used to extend the
method from using a mean PSF for the deconvolution of
the whole field to a deconvolution with a PSF fitting local
properties. This step would certainly improve the retrieval
of extreme values not reached yet (compare missing max-
imum values of LWP in Figure 12) and thus improve its
applicability to other cloud types. Emphasis has been laid
on accuracy rather than computational speed, hence the
current method is too slow to be used as an operational
technique. Nonetheless, it is an excellent possibility to
derive cloud structures directly from measurements for
systematic studies of inhomogeneity effects in radiative
transport or for the experimental analysis of clouds during
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field or satellite validation campaigns. For standard satellite
cloud sensors (e.g., MODIS, AVHRR, Meteosat-SEVIRI)
with a considerably larger pixel size the effects of horizontal
photon transport discussed in this paper are of minor
importance compared to the effects of unresolved sub-
pixel-scale cloud inhomogeneity, at least unless the solar
zenith angle is large or the pixel cloud cover is very small.
The data set provided as a result here will be used for a
systematic investigation of the impact of such subscale
cloud inhomogeneity on remote sensing of cloud properties
analyzing different typical cloud sensors in a follow-up
publication [Zinner and Mayer, 2006].

Appendix A: Adiabatic Model for Cloud
Microphysics

[37] The adiabatic water content describes the maximum
amount of liquid water a cloud volume can contain assuming
that the saturated cloud air parcel was lifted adiabatically
from cloud base height, i.e., without exchange of heat with
the surrounding air. During this ascent the air cools, the
amount of water vapor decreases by condensation according
to the decrease of the saturation water vapor pressure, the
liquid water amount increases at the same rate, and the
condensation heat reduces the vertical temperature lapse rate
to the moist adiabatic lapse rate within the cloud. For
boundary layer clouds the maximum value of adiabatic liquid
water content is an approximation of the real conditions.
Through entrainment of dry air into the cloud volume and
other more dynamic cloud evolution effects the water
content is changed. Nonetheless observational evidence
for the adiabatic assumption has been found frequently
[e.g., Brenguier et al., 2000a; Pawlowska et al., 2000].

[38] Starting point of the adiabatic model is an integrated
value like a liquid water path or an optical thickness. By the
adiabatic liquid water content which depends on height, the
liquid water profile is defined and the cloud geometrical
thickness results from the integrated value of the liquid
water path.

[39] The saturated water vapor mixing ratio g (mass of
water vapor per mass of dry air) is in good approximation
given by

eS

gs =€ )

» (A1)

where eg is the saturation vapor pressure, p is the
atmospheric pressure, and € = 0.622 is the ratio of the
molecular masses of water and air. The saturation vapor
pressure e only depends on the temperature and can be
calculated using the Magnus equation [see, e.g., Pruppacher
and Klett, 1997]. Executing dqy/dz leads to the change of
the water vapor mixing ratio and thus of liquid water
depending on the change of temperature 7 with height, the
moist adiabatic lapse rate I'y = d7/dz, and the change of air
pressure with height dp/dz = —pg (p: air density, g:
gravitational acceleration). Using

1 —pL (%
no_ & k) <d”>T (A2)

ST ¢ 14+ L dqs
P +cp (a’T)p

(cp, specific heat of dry air at constant pressure; L, latent
heat of condensation; indices 7 and p designate the
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derivations at constant temperature and pressure, respec-
tively [Holton, 1992)), dqs/dz and thus the adiabatic liquid
water content w; above a certain cloud base height can be
calculated as wy = g¢p. For the shallow clouds investigated
in this paper the values of pressure and temperature at an
assumed cloud base height (taken from a standard
atmosphere profile for midlatitude summer) are used to
derive the adiabatic liquid water content.

[40] Assuming a fixed cloud droplet concentration N the
effective radius can be determined according to

4
wi :g ’Kkrgfprw7

(A3)
where p,, is the density of water. The factor & represents the
ratio 7o/r2 where 7, is the mean volume radius of a droplet
spectrum. That means & depends on the specific shape of the
droplet spectrum. From in situ measurements £ is estimated
to be between 0.67 £ 0.07 and 0.8 + 0.07 for maritime or
continental air masses, respectively [Martin et al., 1994].
Here a value of 0.8 is used.

Appendix B: Denoising Power Spectra of Monte
Carlo Simulations

[41] As shown in Figure 8 the power spectra of Monte
Carlo simulated radiance fields are dominated by noise if
the computational time is kept low enough to make the
method feasible. The noise amplitude is about the same for
all wave numbers but at high frequencies the influence is
most obvious because the actual amplitude is smallest on
these scales. Here a straightforward technique is presented
to separate the spectrum of the solution from the noise
spectrum: a simple subtraction of the noise amplitude.

[42] In real space as well as in Fourier space the Monte
Carlo result is the sum of true result and noise. According to
equation (2), doubling the number of photons decreases the
noise level by the factor v/2, according to a factor 2 in the
power spectral quadratic amplitudes A* = E(k). The com-
plete power spectra 4y and Agy of the 1 x N photons and
8 x N photons results can thus be written as the sum of the
noise-free spectrum A> and the noise spectra 42 for N
photons and accordingly 1/8 A2 for 8 x N photons:

Ay = AP+ 42, (B1)

1
Ay =4+ §A§‘ (B2)
The difference in the quadratic amplitudes (Figure B1)
between the two power spectra is then

7

A = A7 — Aiy :gAf,. (B3)
To obtain the total noise spectrum AZ the difference
spectrum AA4* consequently has to be scaled by the factor
8/7.

[43] Then this scaled noise power spectrum can be sub-
tracted from the Monte Carlo spectrum. Figure B1b shows
the determination of the power spectrum of the 8 x N Monte
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Carlo run from 8 different 1 x N runs allowing not only to
obtain the 8 x N run’s spectrum but also to define a
confidence interval. The interval is given by the standard
deviation (20) for the quadratic amplitude at each wave
number. In the same way the scaled difference spectrum
leads to a completely “denoised” spectrum (Figure Blc).
[44] Figure B2 shows a demonstration of the technique
using a predefined field of values and its power spectrum.
To this test field Gaussian noise is added to result in eight
different noisy versions of the “truth,” the equivalent to
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Figure B1. (a) Power spectra for different numbers of

photons: 1 x N and 8 x N. The difference in quadratic
amplitude is due to Monte Carlo noise. The complete noise
spectrum is determined by scaling the difference spectrum.
(b) Determination of 8 x N spectrum through the
subtraction of difference spectrum from 1 x N spectra.
(c) Complete removal of quadratic noise amplitude from
spectrum using the scaled noise spectrum (compare
Figure Bla).
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Figure B2. Demonstration of noise removal technique:
Starting from a known “truth,” eight noisy versions are
obtained. The noise level is determined and removed
(compare Figure B1). The true spectrum is reproduced.

eight “Monte Carlo simulations.” As before the difference
in noise amplitude between the eight single fields and their
mean (equivalent to the 8 x N Monte Carlo simulation) is
determined and, after the scaling step, removed from the
8 single power spectra. The true noise free power spectrum
is almost perfectly reproduced.

[45] It should be pointed out that this technique only
allows the removal of the noise influence in the power
spectrum. A back transformation into real space is of course
not possible as the phases cannot be corrected for the noise
influence.

[46] Acknowledgments. Tobias Zinner was supported by the
EC-funded CLOUDMAP project, EVK2-2000-00547. The authors thank
Andreas Macke and an anonymous reviewer for their constructive
comments.

References

Anderson, G., S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle (1986),
AFGL atmospheric constituent profiles, AFGL Tech. Rep., AFGL-TR-86-
0110.

Babey, S., and C. Anger (1989), A compact airborne spectrographic imager
(CASI), paper presented at IGARSS, Inst. of Electr. and Electron. Eng.,
Vancouver, B. C., Canada.

Barker, H. W., R. K. Goldstein, and D. E. Stevens (2003), Monte Carlo
simulation of solar reflectances for cloudy atmospheres, J. Atmos. Sci.,
60, 1881—-1894.

Brenguier, J.-L., H. Pawlowska, L. Schiiller, R. Preusker, J. Fischer, and
Y. Fouquart (2000a), Radiative properties of boundary layer clouds:
Droplet effective radius versus number concentration, J. Atmos. Sci.,
57, 803—-821.

Brenguier, J.-L., et al. (2000b), An overview of the ACE-2 CLOUDY-
COLUMN closure experiment, Tellus, Ser. B, 52, 815-827.

Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch (2003), Resolution require-
ments for the simulation of deep moist convection, Mon. Weather Rev.,
131(10), 2394—-2416.

Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and T. L. Bell (1994a), The
albedo of fractal stratocumulus clouds, J. Atmos. Sci., 51, 2434—2455.
Cahalan, R. F., W. Ridgway, W. J. Wiscombe, S. Gollmer, and Harshvardhan
(1994b), Independent pixel and Monte Carlo estimates of stratocumulus

albedo, J. Atmos. Sci., 51, 3776—-3790.

Cahalan, R. F., D. Silberstein, and J. Snider (1995), Liquid water path
and plane-parallel albedo bias during ASTEX, J. Atmos. Sci., 52,
3002-3012.

Cahalan, R. F., et al. (2005), The International Intercomparison of 3D
Radiation Codes (I3RC): Bringing together the most advanced radiative
transfer tools for cloudy atmospheres, Bull. Am. Meteorol. Soc., 86,
1275-1293.

15 of 16



D08204

Chuang, P. Y. (2000), CCN measurements during ACE-2 and their relation-
ship to cloud microphysical properties, Tellus, Ser: B, 52, 843—867.

Coakley, J. A., Jr. (1991), Reflectivities of uniform and broken layered
clouds, Tellus, Ser. B, 43, 420—433.

Crewell, S., et al. (2004), The BALTEX Bridge Campaign: An integrated
approach for a better understanding of clouds, Bull. Am. Meteorol. Soc.,
85, 15651584, doi:10.1175/BAMS-85-10-1565.

Davis, A., A. Marshak, R. Cahalan, and W. Wiscombe (1997), The Landsat
scale break in stratocumulus as a three-dimensional radiative transfer
effect: Implications for cloud remote sensing, J. Atmos. Sci., 54, 241—
260.

Davis, A. B., R. F. Cahalan, D. Spinhirne, M. J. McGill, and S. P. Love
(1999), Off-beam Lidar: An emerging technique in cloud remote sensing
based on radiative Green-function theory in the diffusion domain, Phys.
Chem. Earth B: Hydrol. Oceans Atmos., 24(3), 177—-185.

Di Giuseppe, F., and A. M. Tompkins (2003), Effect of spatial organization
on solar radiative transfer in three-dimensional idealized stratocumulus
cloud fields, J. Atmos. Sci., 60, 1774—1794.

Evans, K. F., and W. J. Wiscombe (2004), An algorithm for generating
stochastic cloud fields from radar profile statistics, Afmos. Res., 72,
263-289.

Faure, T., H. Isaka, and B. Guillemet (2001), Neural network retrieval of
cloud parameters of inhomogeneous and fractional clouds. Feasibility
study, Remote Sens. Environ., 77, 123—138.

Faure, T., H. Isaka, and B. Guillemet (2002), Neural network retrieval of
cloud parameters from high-resolution multispectral radiometric data: A
feasibility study, Remote Sens. Environ., 80, 285-296.

Fu, Q., M. Cribb, H. Barker, S. Krueger, and A. Grossman (2000), Cloud
geometry effects on atmospheric solar absorption, J. Atmos. Sci., 57,
1156-1168.

Holton, J. R. (1992), An Introduction to Dynamic Meteorology, Int.
Geophys. Ser., vol. 48, Elsevier, New York.

Iwabuchi, H., and T. Hayasaka (2003), A multi-spectral non-local method
for retrieval of boundary layer cloud properties from optical remote sen-
sing data, Remote Sens. Environ., 88, 294-308.

Kolmogorov, A. N. (1941), Local structure of turbulence in incompressible
viscous fluid at a very high Reynolds number, Dokl. Akad. Nauk. SSSR,
30, 299-302.

Loeb, N. G., T. Varnai, and D. M. Winker (1998), Influence of subpixel-
scale cloud-top structure of reflectances from overcast stratiform cloud
layers, J. Atmos. Sci., 55, 2960—2973.

Lucy, L. B. (1974), An iterative technique for the rectification of observed
distributions, Astron. J., 79, 745-754.

Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan (1995), Radiative
smoothing in fractal clouds, J. Geophys. Res., 100(D12),26,247—-26,261.

Marshak, A., A. Davis, R. Cahalan, and W. Wiscombe (1998a), Nonlocal
independent pixel approximation: Direct and inverse problems, /EEE
Trans. Geosci. Remote Sens., 36, 192—204.

Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan (1998b), Radiative
effects of sub-mean free path liquid water variability observed in strati-
form clouds, J. Geophys. Res., 103(D16), 19,557—19,567.

Marshak, A., A. Davis, W. Wiscombe, W. Ridgway, and R. Cahalan
(1998c¢), Biases in shortwave column absorption in the presence of fractal
clouds, J. Clim., 11, 431—-446.

Martin, G. M., D. W. Johnson, and A. Spice (1994), The measurement and
parameterization of effective radius of droplets in warm stratocumulus
clouds, J. Atmos. Sci., 51, 1823—1842.

Mayer, B. (1999), I3RC phase 1 results from the MYSTIC Monte Carlo
model, in Intercomparison of Three-Dimensional Radiation Codes:
Abstracts of the First and Second International Workshops, pp. 49—
54, Univ. of Ariz. Press, Tucson.

ZINNER ET AL.: THREE-DIMENSIONAL CLOUD STRUCTURES FROM RADIANCE DATA

D08204

Mayer, B. (2000), I3RC phase 2 results from the MYSTIC Monte Carlo
model, in Intercomparison of Three-Dimensional Radiation Codes:
Abstracts of the First and Second International Workshops, pp. 107—
108, Univ. of Ariz. Press, Tucson.

Mayer, B., and A. Kylling (2005), Technical note: The libRadtran software
package for radiative transfer calculations: Description and examples of
use, Atmos. Chem. Phys., 5, 1855—1877.

O’Hirok, W., and C. Gautier (1998), A three-dimensional radiative transfer
model to investigate the solar radiation within a cloudy atmosphere. Part
I: Spatial effects, J. Atmos. Sci., 55, 2162-2179.

Pawlowska, H., J.-L. Brenguier, and F. Burnet (2000), Microphysical prop-
erties of stratocumulus clouds, A¢tmos. Res., 55, 15-33.

Pruppacher, H. R., and J. D. Klett (1997), Microphysics of Clouds and
Precipitation, Springer, New York.

Richardson, W. H. (1972), Bayesian-based iterative method of image
restoration, J. Opt. Soc. Am., 62, 55—-59.

Rossow, W. B., C. Delo, and B. Cairns (2002), Implications of the observed
mesoscale variations of clouds for the Earth’s radiation budget, J. Clim.,
15, 557-585.

Scheirer, R., and A. Macke (2003), Cloud inhomogeneity and broad-
band solar fluxes, J. Geophys. Res., 108(D19), 4599, doi:10.1029/
2002JD003321.

Scheirer, R., and S. Schmidt (2005), CLABAUTAIR: A new algorithm for
retrieving three-dimensional cloud structure from airborne microphysical
measurements, Atmos. Chem. Phys., 5, 2333—-2340.

Schroder, M., and R. Bennartz (2003), Impact of gas absorption and surface
albedo on cloud radiative smoothing, Geophys. Res. Lett., 30(4), 1168,
doi:10.1029/2002GL016523.

Schiiller, L., J.-L. Brenguier, and H. Pawlowska (2003), Retrieval of micro-
physical, geometrical, and radiative properties of marine stratocumulus
from remote sensing, J. Geophys. Res., 108(D15), 8631, doi:10.1029/
2002JD002680.

Stephens, G., et al. (2002), The Cloudsat mission and the A-train, Bull. Am.
Meteorol. Soc., 83, 1771—-1790.

Varnai, T. (2000), Influence of three-dimensional radiative effects on the
spatial distribution of shortwave cloud reflection, J. Atmos. Sci., 57,
216-229.

Varnai, T., and A. Marshak (2001), Statistical analysis of the uncertainties
in cloud optical depth retrievals caused by three-dimensional radiative
effects, J. Atmos. Sci., 58, 1540—1548.

Venema, V., S. Meyer, S. G. Garcia, C. Simmer, S. Crewell, U. Lohnert,
and T. Trautmann (2004), Iterative amplitude adapted Fourier trans-
form surrogate cloud fields, paper presented at 14th International Con-
ference on Clouds and Precipitation, World Meteorol. Organ., Bologna,
Italy.

von Storch, H., and F. W. Zwiers (1999), Statistical Analysis in Climate
Research, Cambridge Univ. Press, New York.

Wyser, K., W. O’Hirok, C. Gautier, and C. Jones (2002), Remote sensing of
surface solar irradiance with corrections for 3-D cloud effects, Remote
Sens. Environ., 80, 272—-284.

Zinner, T., and B. Mayer (2006), Remote sensing of stratocumulus clouds:
Uncertainties and biases due to inhomogeneity, J. Geophys. Res.,
doi:10.1029/2005JD006955, in press.

B. Mayer and T. Zinner, Institut fiir Physik der Atmosphére, Deutsches
Zentrum flir Luft- und Raumfahrt Oberpfaffenhofen, Miinchner Strafe 20,
D-82230 WeBling, Germany. (tobias.zinner@dlr.de)

M. Schroder, Institut fiir Weltraumwissenschaften, Fachbereich Geo-
wissenschaften (FB 24), Freie Universitidt Berlin, Carl-Heinrich-Becker-
Weg 6-10, D-12165 Berlin, Germany.

16 of 16



